1467

Catalysis of the Water Gas Shift Reaction by Ru(TPPS)CO^{4–} [TPPS = meso-Tetra(4-sulphonatophenyl)porphyrinato]

Michael Pawlik, M. Fazlul Hoq, and Rex E. Shepherd*

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

The synthesis of the water soluble Ru^{\parallel} porphyrin, $Ru(TPPS)CO^{4-}$ [TPPS = meso-tetra(4-sulphonatophenyl)-porphyrinato], and its ability to catalyse the water gas shift reaction is reported.

Ru(TPP) (TPP = tetraphenylporphyrinato) and Ru(OEP)(OEP = octaethylporphyrinato) have been prepared previously and have been shown reversibly to bind CO and O2.1,2 The Ru11 porphyrins are also able to expand their co-ordination number from 6 to 7 to accommodate cis binding of two groups on one side of the porphyrin plane.³ This feature is important for the decarbonylation of aldehydes into RH and CO by Ru(TPP) or Ru(OEP).⁴ For these reasons it occurred to us that Ru¹¹ porphyrins would be good candidates as catalysts for the water gas shift reaction (W.G.S.R.) assuming the Ru¹¹-CO bond is susceptible to nucleophilic addition of OH- and the normal mechanism for W.G.S.R. activity of metal carbonyl complexes is followed.⁵ The porphyrin catalyst should be free from clusterforming side reactions which reduce the catalytic activity of the mononuclear carbonyl systems Fe(CO)₅, Mo(CO)₆, W(CO)₆,⁶⁻⁸ or trinuclear cases such as Ru₃(CO)₁₂.⁹ We have prepared the first water soluble Ru¹¹ porphyrin as the TPPS⁶⁻ [TPPS = meso-tetra(4-sulphonatophenyl)porphyrinato] monocarbonyl complex, Ru(TPPS)CO⁴⁻. Na₄TPPS·12H₂O and $Ru_3(CO)_{12}$ were refluxed in dimethylformamide (DMF) under an Ar atmosphere for 1 to 3 weeks. Ru(TPPS)CO⁴⁻ was separated from unchanged Ru₃(CO)₁₂ and various other derivatives by chromatography on silica gel or alumina. Elution was achieved with CHCl₃, CHCl₃: MeOH 3:1, and finally MeOH. The Na₄[Ru(TPPS)CO] salt may be precipitated from the methanol fraction by slow addition of CHCl₃. The Ru^{II} porphyrin is contaminated by other sodium salts and may be converted into the pure Ca²⁺ salt, Ca₂[Ru(TPPS)-CO]·12H₂O by redissolving the solid in a minimum amount of water and adding to saturated CaCl₂ solution, protected from the atmosphere. Ru(TPPS)CO⁴⁻ has the following maxima (nm) in DMF: 413, 528, 591sh, 641; compared to Ru(TPP)CO in CHCl₃: 412, 490sh, 528, 563 or H₂TPPS⁴⁻ in DMF: 417, 447sh, 508, 543, 586, 643. Ru(TPPS)CO⁴⁻, v_{co} 1940 cm⁻¹; *cf.* Ru(TPP)CO¹⁰ in KBr pellets, 1945 cm⁻¹. Satisfactory analytical data for Ca₂[Ru(TPPS)CO]·12H₂O were obtained.

Aqueous solutions of Ru(TPPS)CO⁴⁻ under a CO atmosphere catalyse the formation of H₂ plus CO₂. The W.G.S.R. was carried out at 100 °C in stirred 100 ml aqueous solutions at equilibrium with 5.0 l of CO at 1 atm. The gas phase was sampled with a gas tight syringe as a function of time over periods of 24 and 48 h (see Table 1). Gas analysis was carried out using a glass column packed with Porpak Q under a He carrier gas flow. The separation of CO, H₂O vapour, O₂ etc. from CO₂ was compared with standard authentic mixtures. Under system 1 conditions in Table 1, the Ru(TPPS)CO⁴⁻ is 6.3 fold more reactive than Ford's Ru₃(CO)₁₂ system⁹ per mole of Ru. The actual CO₂/H₂ yield is larger, if the gas phase CO₂ analysis is corrected for the amount of CO₂ absorbed by the reactant solution as HCO₃⁻ and CO₃²⁻.

Table 1. Catalysis of the W.G.S.R. via Ru(CO)TPPS^{4-,a}

System no.	Solvent	Ru(CO)TPPS ⁴⁻ /g ^b	NaOH/g	Base/metal mole ratio	Temp./°C	Moles of CO ₂ ^a / mole of Ru(CO)TPPS ⁴⁻ / (first CO charge)	$\begin{array}{rl} 10^2 \times \text{total} \\ \text{h} & \text{moles } \text{CO}_2 \\ & \text{in } 24 \text{ h}^d \end{array}$
1	Potassium biphthalate buffer						
	(pH 4.01)	0.0523	0	0	100	10.3°	1.12
2	NaOH/H ₂ Ó	0.0570	0.1038	52.6	23	0	≤0.143
3	NaOH/H ₂ O	0.0575	0.1092	54.8	100	0.19°	0.282
4	H ₂ O (no base) (pH 7.20)	0.0545	0	0	100	0	<i>ca</i> . 0
5	NaOH/H ₂ O	0.0571	1.0850	547	100	3.75°	3.16
n							

^a Determination of CO₂ produced was based on sample peak areas νs . calibrated peak areas. ^b As Na₄Ru(TPPS)CO solid. ^c Gas phase yield. ^d Gas phase plus solution solubility.

These results point to water soluble porphyrin catalysts as a potentially viable scheme for effecting the W.G.S.R. without the cluster- and hydride-forming side reactions.

Support for M. Pawlik and M. F. Hoq by a National Science Foundation grant is gratefully acknowledged.

Received, 25th August 1983; Com. 1162

References

- 1 N. Farrell, D. H. Dolphin, and B. R. James, J. Am. Chem. Soc., 1978, 100, 324.
- F. R. Hopf and D. G. Whitten, J. Am. Chem. Soc., 1976, 98, 7422; J. P. Collman, C. E. Barnes, T. J. Collins, and P. J. Brothers, J. Am. Chem. Soc., 1981, 103, 7030.
- 3 R. G. Ball, G. Domazetis, D. Dolphin, B. R. James, and J. Trotter, *Inorg. Chem.*, 1981, **20**, 1556; G. Domazetis, B. R. James, and D. Dolphin, *Inorg. Chim. Acta*, 1981, **54**, L47.

- 4 G. Domazetis, B. Tarpey, D. Dolphin, and B. R. James, J. Chem. Soc., Chem. Commun., 1980, 939.
- 5 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4th edn., Wiley-Interscience, New York, 1980, ch. 30.
- 6 R. B. King, C. C. Frazier, R. M. Haines, and A. D. King, J. Am. Chem. Soc., 1978, 100, 2925.
- 7 H. C. Kang, C. H. Maudlin, T. Cole, W. Slegeir, K. Cann, and R. Pettit, J. Am. Chem. Soc., 1977, 99, 8323; K. Cann, T. Cole, W. Slegeir, and R. Pettit, J. Am. Chem. Soc., 1978, 100, 3969.
- 8 A. D. King, R. B. King, and D. B. Yang, J. Am. Chem. Soc., 1980, 102, 1028.
- 9 P. C. Ford, Acc. Chem. Res., 1981, 14, 31; R. M. Laine, R. G. Pinker, and P. C. Ford, J. Am. Chem. Soc., 1977, 99, 252.
- 10 M. Tsutsui, D. Ostfeld, J. N. Francis, and L. M. Hoffman, J. Coord. Chem., 1971, 1, 115.